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Abstract
We consider the general problem of a single two-level atom interacting with
a multimode radiation field (without the rotating-wave approximation), and
additionally take the field to be coupled to a thermal reservoir. Using the method
of bosonization of the spin operators in the Hamiltonian, and working in the
Bargmann representation for all the boson operators, we obtain the propagator
for the composite system using the techniques of functional integration, under
a reasonable approximation scheme. The propagator is explicitly evaluated for
a simplified version of the system with one spin and a dynamically coupled
single-mode field. The results are also checked on the known problem of
quantum Brownian motion.

PACS numbers: 03.65.Db, 03.65.Yz, 42.50.Ct

1. Introduction

The spin–Bose system of a two-level atom (or a spin-1/2 particle) interacting with a multimode
quantum field serves as a useful model in a wide range of problems in atomic-optical and
condensed matter physics. Most of the studies on decoherence and dissipation of a system of
interest in contact with an environment are based on the spin–Bose model describing quantum
Brownian motion of a simple harmonic oscillator in a harmonic-oscillator environment [1–4].
An interesting variant of the problem, that of measurement of the spin of a particle in the
presence of an inhomogeneous magnetic field in a Stern–Gerlach apparatus when the particle
is coupled to an environment of a collection of non-interacting harmonic oscillators via its
position has also been worked out in detail [5–7]. The subtle issues of decoherence in the
zero-temperature environment via statistical mixing or dephasing without energy dissipation
have attracted much recent attention [4, 7]. The problems are usually treated using the
Feynman–Vernon [1] influence functional formalism. The reservoir is assumed to be in thermal
equilibrium at a temperature T and the reservoir modes are eliminated to get the dynamics of
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the reduced density matrix for the system under consideration. Since the coupling constant
for the interaction of the radiation with the atom is very small, in quantum optical applications,
the rotating wave approximation (RWA) is used in the fully quantized treatment of the spin–
Bose system. However, with this approximation, some interesting quantum electrodynamical
effects, e.g., the zero-point fluctuations of the field and the atom, are missed out. Also, for
many problems in condensed matter physics, for example, in the treatment of two-site small-
polaron dynamics [8], the coupling constant is usually large and therefore the RWA is not
quite appropriate for the description of the system.

In this paper we consider a more general problem of a single two-level atom interacting
with a multimode radiation field which in turn is coupled to a thermal reservoir. This depicts,
for example, the familiar spin–Bose system in a cavity with the boson field decaying through
the walls of the cavity. In order to study the complete dynamics of the system, we will use a
technically tractable and flexible method of functional integration developed by Papadopoulos
[9] without making the RWA, and extend his work to obtain the propagator associated with
our system.

A difficulty associated with handling path integrals for spins comes from the discrete
matrix nature of the spin-Hamiltonians. To overcome this difficulty, the starting point of the
work is to bosonize the Hamiltonian by representing the spin angular momentum operators in
terms of boson operators following Schwinger’s theory of angular momentum [10].

We then use the Bargmann representation [11] for all the boson operators. The Schrödinger
representation of quantum states diagonalizes the position operator, expressing pure states as
wavefunctions, whereas the Bargmann representation diagonalizes the creation operator a†,
and expresses each state vector |ψ〉 in the Hilbert state H as an entire analytic function f (α)
of a complex variable α. The association |ψ〉 −→ f (α) can be written conveniently in
terms of the normalized coherent states |α〉 which are the right eigenstates of the annihilator
operator a:

a|α〉 = α|α〉 〈α′|α〉 = exp
(− 1

2 |α′|2 − 1
2 |α|2 + α′∗α

)
giving

f (α) = e−|α|2/2〈α∗|ψ〉.
In the Bargmann representation, the actions of a and a† are [9]

a†f (α) = α∗f (α) af (α) = df (α)

dα∗ .

The propagator for the bosonized Hamiltonian in the expanded space is worked out as a
path integral over coherent state variables. For a single spin–Bose system, the treatment of
Papadopoulos [9] involves decoupling of the radiation variables from the coherent variables
originating from the spin via a complex auxiliary field. The propagator is then expressed as a
Gaussian functional integral over the auxiliary field of the product of two forced propagators,
a radiation and a spin-bosonized propagator, and the propagator for the original system is
extracted by appropriate projection.

The present paper is organized as follows. In section 2 we detail the method of
bosonization and functional integration,and obtain the propagator for a Hamiltonian describing
a single two-level atom interacting with a multimode radiation field which in turn is coupled
to only one harmonic oscillator in the ‘reservoir’ to begin with. Two independent complex
auxiliary fields are introduced to decouple the two interaction terms. In section 3 we generalize
this result to obtain the propagator for the original Hamiltonian with a multimode thermal
reservoir. In section 4 we present an application of our propagator for the problem of quantum
Brownian motion. From our results the normalized reduced density matrix of the damped
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harmonic oscillator is reproduced satisfactorily. In section 5 we carry out an explicit evaluation
of our propagator for a simplified version of the Hamiltonian with one spin and a dynamically
coupled single-mode field. Finally, in section 6, we summarize the results.

2. Functional integration of the bosonized Hamiltonian

The Hamiltonian for our system of a single two-level atom interacting with a multimode
radiation field coupled to a thermal reservoir is

H = HF +HA +HAF +HR +HFR (1)

where HF ,HA,HR denote the Hamiltonians for the free field (M modes), the atom and
the reservoir (K modes), respectively, HAF denotes the interaction of the atom with the
electromagnetic field which is written in the dipole approximation without making the rotating
wave approximation,HFR denotes the interaction of the field with the reservoir, for which we
use the linear coupling model of the position–position kind:

HF =
M∑
r=1

h̄�ra
†
r ar (2)

HA = 1

2
h̄ωσz (3)

HR =
K∑
k=1

h̄�kb
†
kbk (4)

HAF =
M∑
r=1

h̄
(
g∗
r a

†
r + grar

)
σx (5)

HFR =
K∑
k=1

M∑
r=1

h̄gkr
(
a†r + ar

)(
b
†
k + bk

)
. (6)

Here we have made use of the equivalence of a two-level atom and a spin-1/2 system, σx, σz
denote the standard Pauli spin matrices and are related to the spin-flipping (or atomic raising
and lowering) operators S+ and S−: σx = S+ + S−, σz = 2S+S− − 1. In (2) a†r , ar stand for the
Bose creation and annihilation operators for the M oscillators denoting the electromagnetic
field, and in (4) b†k, bk denote the Bose creation and annihilation operators for the K oscillators
representing the reservoir. In (5), g∗

r and gr are the coupling constants for interaction of
the field with the spin. In (6) gkr stands for the coupling constants (assumed real) for the
interaction of the field with the reservoir.

We now outline the method of bosonization and functional integration for the propagator
of the following simple part of the Hamiltonian (1) with only one harmonic oscillator in the
‘reservoir’:

H1 =
M∑
r=1

h̄�ra
†
r ar +

1

2
h̄ωσz +

M∑
r=1

h̄
(
g∗
r a

†
r + grar

)
σx + h̄�b†b +

M∑
r=1

h̄g1r
(
a†r + ar)(b

† + b)

(7)

where g1r are real.
In order to express the spin angular momentum operators in terms of boson operators, we

employ Schwinger’s theory of angular momentum [10] by which any angular momentum can
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be represented in terms of a pair of boson operators with the usual commutation rules. The
spin operators σz and σx can be written in terms of the boson operators aβ, a

†
β and aγ , a†γ as

σz = a†γ aγ − a
†
βaβ σx = a†γ aβ + a†βaγ .

In the Bargmann representation [11] we associate the variable β∗ with the spin-down state and
the variable γ ∗ with the spin-up state. The flipping operators S− and S+ take the forms β∗ ∂

∂γ ∗

and γ ∗ ∂
∂β∗ , respectively, and we have

σz −→
(
γ ∗ ∂

∂γ ∗ − β∗ ∂

∂β∗

)
σx −→

(
γ ∗ ∂

∂β∗ + β∗ ∂

∂γ ∗

)
.

Thus the bosonized form of the Hamiltonian (7) is

HB1 =
M∑
r=1

h̄�rα
∗
r

∂

∂α∗
r

+
1

2
h̄ω

(
γ ∗ ∂

∂γ ∗ − β∗ ∂

∂β∗

)

+
M∑
r=1

h̄

(
g∗
r α

∗
r + gr

∂

∂α∗
r

)(
γ ∗ ∂

∂β∗ + β∗ ∂

∂γ ∗

)
+ h̄�θ∗ ∂

∂θ∗

+
M∑
r=1

h̄g1r

(
α∗
r +

∂

∂α∗
r

)(
θ∗ +

∂

∂θ∗

)
(8)

where θ∗, ∂/∂θ∗ are the Bargmann representations for b† and b, respectively, and α∗
r , ∂/∂α

∗
r

for a†r and ar , respectively.
A particular solution of the Schrödinger equation with this bosonized Hamiltonian has

the form [9]

U1 = U00β
∗β ′ + U01β

∗γ ′ + U10γ
∗β ′ + U11γ

∗γ ′ (9)

where the amplitudes Uij are now functions of time as well as the coherent state variables
associated with the boson oscillators, with the initial condition

Uij (t = 0) = exp(θ∗θ ′) exp

{
M∑
r=1

α∗
r α

′
r

}
δij (i, j = 0, 1). (10)

The initial condition for the expanded propagator associated with the bosonized
Hamiltonian given by (8) is then given as

U(t = 0) = exp(θ∗θ ′) exp

{
M∑
r=1

α∗
r α

′
r

}
exp
{
β∗β ′ + γ ∗γ ′} . (11)

If the Hamiltonian is in the normal form given by H(α∗, ∂/∂α∗, t), the associated propagator
is given as a path integral over coherent state variables as [12]

U(α∗, t; α′, 0) =
∫

D2{α} exp

{ ∑
0�τ<t

α∗(τ+)α(τ )− i

h̄

∫ t

0
dτH(α∗(τ+), α(τ ), τ )

}
. (12)

Here
∑

0�τ<t α
∗(τ+)α(τ ) stands for

∑N−1
j=0 α

∗(τj+1)α(τj ) in the subdivision of the interval
[0, t], i.e., when τ stands for τj , τ+ stands for the next point τj+1 in the subdivision. Similarly,
in the subdivision scheme,∫ t

0
dτH(α∗(τ+), α(τ ), τ ) =

N−1∑
j=0

H(α∗(τj+1), α(τj ), τj )�τj .
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Also, the path differential in (12) is

D2{α} =
∏

0<τ<t

D2α(τ) (13)

where the weighted differential is

D2α(τ) = 1

π
exp(−|α(τ)|2) d2α(τ). (14)

Using (12) we can write the propagator for the bosonized Hamiltonian given by (8) as
follows:

u1(θ
∗,α∗, β∗, γ ∗, t; θ ′,α′, β ′, γ ′, 0)

=
∫

D2{θ}D2{α} D2{β} D2{γ } exp

{ ∑
0�τ<t

[
θ∗(τ+)θ(τ ) +

M∑
r=1

α∗
r (τ+)αr(τ )

+ β∗(τ+)β(τ ) + γ ∗(τ+)γ (τ )

]
− i

M∑
r=1

∫ t

0
dτ �rα∗

r (τ+)αr (τ )

− i
∫ t

0
dτ�θ∗(τ+)θ(τ )− i

ω

2

∫ t

0
dτ [γ ∗(τ+)γ (τ )− β∗(τ+)β(τ )]

− i
M∑
r=1

∫ t

0
dτ [g∗

r α
∗
r (τ+) + grαr (τ )][γ ∗(τ+)β(τ ) + β∗(τ+)γ (τ )]

− i
M∑
r=1

∫ t

0
dτ g1r (α

∗
r (τ+) + αr(τ ))(θ∗(τ+) + θ(τ ))

}
. (15)

In the above equation α is a vector with components {αr }, and D2{α} =∏M
r=1 D2{αr}.

The propagator given by (15) is evaluated by the introduction of two independent complex
auxiliary fields f (τ) and f1(τ ) which decouple the two interaction terms in (15) as follows:

exp

[
−i

M∑
r=1

∫ t

0
dτ (g∗

r α
∗
r (τ+) + grαr (τ ))(γ ∗(τ+)β(τ ) + β∗(τ+)γ (τ ))

]

=
∫

D2{f } exp

[
−i

M∑
r=1

∫ t

0
dτ f ∗(τ )(g∗

r α
∗
r (τ+) + grαr(τ ))

]

× exp

[∫ t

0
dτ f (τ )(γ ∗(τ+)β(τ ) + β∗(τ+)γ (τ ))

]
(16)

and

exp

[
−i

M∑
r=1

∫ t

0
dτ g1r (α

∗
r (τ+) + αr(τ ))(θ∗(τ+) + θ(τ ))

]

=
∫

D2{f1} exp

[
−i

M∑
r=1

∫ t

0
dτ f ∗

1 (τ )g1r (α
∗
r (τ+) + αr(τ ))

]

× exp

[∫ t

0
dτ f1(τ )(θ

∗(τ+) + θ(τ ))

]
. (17)

Here we have used the δ-functional identity [9]∫
D2{X}P [X∗(t)] exp

{∫ t

0
dτ Y (τ )X(τ)

}
= P [Y (t)] (18)
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where D2{X} is a functional differential:

D2{X} = exp

(
−
∫ t

0
dτ |X(τ)|2

) ∏
0�τ<t

(
dτ

π

)
d2X(τ) (19)

and P [X∗(t)] is an explicit functional of X∗ only. The roles of X∗ and X are interchangeable
in the identity (18). Making use of (16) and (17) we can write the propagator given by (15) as

u1(θ
∗,α∗, β∗, γ ∗, t; θ ′,α′, β ′, γ ′, 0)

=
∫ ∫

D2{f }D2{f1}G1(α
∗, t; α′, 0; [f ∗, f ∗

1 ])

×M1(θ
∗, t; θ ′, 0; [f1])N1(β

∗, γ ∗, t; β ′, γ ′, 0; [f ]). (20)

Here G1 stands for the propagator for

HG1 = h̄

M∑
r=1

[
�rα

∗
r

∂

∂α∗
r

+ (f ∗(t)g∗
r + f ∗

1 (t)g1r )α
∗
r + (f ∗(t)gr + f ∗

1 (t)g1r )αr

]
(21)

M1 stands for the propagator for

HM1 = h̄

[
�θ∗ ∂

∂θ∗ + if1(t)(θ
∗ + θ)

]
(22)

N1 stands for the propagator for

HN1 = h̄ω

2

(
γ ∗ ∂

∂γ ∗ − β∗ ∂

∂β∗

)
+ ih̄f (t)

(
γ ∗ ∂

∂β∗ + β∗ ∂

∂γ ∗

)
. (23)

These obey the Schrödinger equations ih̄∂G1/∂t = HG1G1, ih̄∂M1/∂t = HM1M1 and
ih̄∂N1/∂t = HN1N1 with the initial conditions:

G1(t = 0) = exp

{
M∑
r=1

α∗
r α

′
r

}
M1(t = 0) = exp(θ∗θ ′)

(24)
N1(t = 0) = exp(β∗β ′ + γ ∗γ ′).

Now the propagatorG1 is given by

G1 = G1aG1bG1c (25)

where

G1a = exp

{
M∑
r=1

α∗
r α

′
r e−i�r t−

M∑
r=1

[
iα∗
r g

∗
r

∫ t

0
dτ f ∗(τ ) e−i�r(t−τ) + iα′

rgr

∫ t

0
dτ e−i�rτ f ∗(τ )

+ |gr |2
∫ t

0
dτ
∫ τ

0
dτ ′ e−i�r(τ−τ ′)f ∗(τ )f ∗(τ ′)

]}
(26)

G1b = exp

{
−

M∑
r=1

[
iα∗
r g1r

∫ t

0
dτ f ∗

1 (τ ) e−i�r(t−τ) + iα′
rg1r

∫ t

0
dτ e−i�rτf ∗

1 (τ )

+ (g1r )
2
∫ t

0
dτ
∫ τ

0
dτ ′ e−i�r (τ−τ ′)f ∗

1 (τ )f
∗

1 (τ
′)
]}

(27)
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G1c = exp

{
−

M∑
r=1

[
grg1r

∫ t

0
dτ
∫ τ

0
dτ ′ e−i�r(τ−τ ′)f ∗(τ )f ∗

1 (τ
′)

+ g1rg
∗
r

∫ t

0
dτ
∫ τ

0
dτ ′ e−i�r(τ−τ ′)f ∗

1 (τ )f
∗(τ ′)

]}
. (28)

The propagatorM1 is given by

M1 = exp{θ∗θ ′ e−i�t } exp

{∫ t

0
dτ ã(τ )f1(τ )

}
exp

{∫ t

0
dτ
∫ τ

0
dτ ′′ e−i�(τ−τ ′′)f1(τ )f1(τ

′′)
}
(29)

where

ã(τ ) = θ∗ e−i�(t−τ) + θ ′ e−i�τ . (30)

In order to facilitate the functional averaging we make an approximation by keeping only
the symmetrical part of the two-time kernel in the RHS of (29):

M1 −→ M0
1 = exp{θ∗θ ′ e−i�t} exp

{∫ t

0
dτ ã(τ )f1(τ )

}
× exp

{
1

2

∫ t

0
dτ
∫ t

0
dτ ′′ e−i�(τ−τ ′′)f1(τ )f1(τ

′′)
}
. (31)

The bilinear functional occurring on the RHS of (31) can be replaced by a linear functional in
f1(τ ) with the help of a complex auxiliary variable z as follows [14]:

exp

[
− i

h̄

∫ t

0
dτ
∫ t

0
dτ ′′a(τ)b(τ ′′)f1(τ )f1(τ

′′)
]

=
∫

d2z

iπ
exp

[
i√
h̄

∫ t

0
dτ (za(τ ) + z∗b(τ))f1(τ ) + i|z|2

]
. (32)

With

a(τ) = ih̄

2
e−i�τ b(τ ) = ei�τ (33)

the propagatorM0
1 can be written as

M0
1 = exp{θ∗θ ′ e−i�t }

∫
d2z

iπ
exp{i|z|2} exp

{∫ t

0
dτ ẽ(τ )f1(τ )

}
(34)

where

ẽ(τ ) ≡ ã(τ ) +
i√
h̄
(za(τ ) + z∗b(τ)). (35)

The propagatorN1 has been obtained by Papadopoulos [9] as

N1 = exp{Q00β
∗β ′ +Q01β

∗γ ′ +Q10γ
∗β ′ +Q11γ

∗γ ′}

=
∞∑
l=0

1

l!

[
(β∗, γ ∗)Q

(
β ′

γ ′

)]l
. (36)

Here the l = 1 term corresponds to the single spin case given by (7). The Q are given in terms
of a power series in the spin-flipping energy:

Q =
∞∑
n=0

Q(n) (37)
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with

Q(n)(t) =
( iω

2
σz

)n ∫ t

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1

× exp

[
σx

(∫ τ1

0
−
∫ τ2

τ1

+ · · · + (−1)n
∫ t

τn

)
dτ f (τ )

]
. (38)

Now we can write the propagator given in (20) for the bosonized Hamiltonian (8)
approximately as

u1 =
∫

D2{f }G1a

{∫
D2{f1}G1bG1cM

0
1

}
N1 (39)

with G1a,G1b,G1c given by (26), (27), (28), respectively, M0
1 by (34), N1 by (36). The

propagator u1 corresponding to the Hamiltonian of (7) is given by u1 in (39) with only the
l = 1 term in N1. By repeated use of the δ-functional identity given by (18), the propagator
u1 is obtained with its amplitudes Uij (i, j = 0, 1) in a matrix arrangement as[
U00 U01

U10 U11

]
= exp{θ∗θ ′ e−�t} exp

{
M∑
r=1

α∗
r α

′
r e−i�r t

} ∞∑
n=0

( iω

2

)n
×
∫ t

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1

{
Kα̃(�)√
α̃2 + 4�ξ

exp
{
F
(n)

2

}
exp

{
− i

4
A
}

×
[

cosh(φ
(n)
) sinh(φ

(n)
)

(−1)n sinh(φ
(n)
) (−1)n cosh(φ

(n)
)

]}
(40)

where

Kα̃(�) = exp{−m(�)θ∗ e−i�t −m(−�)θ ′ − N(�)(θ∗)2 e−2i�t

−N(−�)(θ ′)2 − 2(̃α − 1)θ∗θ ′ e−i�t } (41)

F
(n)

2 = −
M∑
r=1

|gr |2
�2
r

{
2n + 1 − i�rt + 2

n∑
k=1

(−1)k e−i�r τk + (−1)n+1 e−i�r t

×
(

1 + 2
n∑
k=1

(−1)k ei�rτk

)
+ 4

n∑
j=2

j−1∑
k=1

(−1)j+k e−i�r(τj−τk)
}

(42)

m(�) =
M∑
r=1

{α∗
r g1rS1(�) + α′

rg1rS2(�)} (43)

S1(�) = 1

(�r +�)
(ei�t − e−i�r t ) (44)

S2(�) = 1

(�r −�)
(1 − e−i(�r−�)t ) (45)

N(�) =
M∑
r=1

(g1r )
2 t(�) (46)

t(�) = 1

(�r +�)

{
1

2�
(1 − ei2�t ) +

1

(�r −�)
(1 − e−i(�r−�)t )

}
(47)

α̃ = 1 + 1
2 (P (�) + P(−�)) (48)
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P(�) =
M∑
r=1

(g1r )
2g′(�) (49)

g′(�) = 1

(�r −�)

{
−it +

1

(�r −�)
(1 − e−i(�r−�)t )

}
(50)

� = − h̄
4
N(−�) (51)

ξ = 1

h̄
N(�) (52)

φ
(n) = φ

(n)

21 − n1(�)θ
∗ e−i�t − n1(−�)θ ′ − i

4
C (53)

φ
(n)
21 =

M∑
r=1

(−α∗
r e−i�r tT

(n)∗
2r + α′

rT
(n)

2r

)
(54)

T
(n)

2r = − gr

�r

{
1 + 2

n∑
j=1

(−1)j e−i�rτj + (−1)n+1 e−i�r t

}
(55)

A = a11
(
β̃2

1 + β̃2
2

)
+ a12(γ̃1β̃1 + γ̃2β̃2) + a21(β̃1γ̃1 + β̃2γ̃2) + a22

(
γ̃ 2

1 + γ̃ 2
2

)
(56)

C = 2a11β̃1β̃2 + a12(γ̃1β̃2 + γ̃2β̃1) + a21(β̃1γ̃2 + β̃2γ̃1) + 2a22γ̃1γ̃2 (57)(
a11 a12

a21 a22

)
=
(−�̃ α̃/2
α̃/2 −ξ̃−1

)
=
(−ξ̃ /D −α̃/2D

−α̃/2D −�̃/D
)

(58)

�̃ = i� ξ̃ = iξ β̃1 = iβ1 β̃2 = iβ2 γ̃1 = iγ1 γ̃2 = iγ2 (59)

D = − 1
4 (̃α

2 + 4ξ�) (60)

β1 =
√
h̄
[

1
2m(−�) +N(−�)θ ′ + (̃α − 1)θ∗ e−i�t ] (61)

β2 =
√
h̄
[

1
2n1(−�)

]
(62)

n1(�) =
M∑
r=1

{
grg1rY

(n)

2 (�) + g1rg
∗
r Z

(n)

2 (�)
}

(63)

Y
(n)
2 (�) = 1

(�r +�)

{
(−1)n+1

[
ei�t

�
+

e−i�r t

�r

]

+
n∑
j=1

(−1)j2

(
ei�τj

�
+

e−i�rτj

�r

)
+

(
1

�
+

1

�r

)}
(64)
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Z
(n)

2 (�) = 1

�r

(−1)n+1

[
ei�t

�
+ (−1)n

e−i(�r−�)t

(�r −�)

]
+

2

(�r −�)

n∑
j=1

(−1)j+1 e−i�r(t−τj ) ei�t

− 2�r
�(�r −�)

n∑
j=1

(−1)j+1 ei�τj +

(
1

�
+

1

(�r −�)

) (65)

γ1 = − i√
h̄

[m(�) + 2N(�)θ∗ e−i�t + 2(̃α − 1)θ ′] (66)

γ2 = −i√
h̄
n1(�). (67)

Equation (40), together with (41)–(67), gives the propagator for the Hamiltonian of (7). Note
that this is a power series in the spin-flipping energy. Equation (40) satisfies the initial
condition given by (10). Also, it can easily be seen that (40) reduces to the propagator for
the single spin–Bose system obtained by Papadopoulos [9] when the appropriate terms in the
Hamiltonian in (7) are set to zero.

We have obtained the propagator u1 with the approximate expression M0
1 given by (31)

for M1 given in (29). Let us now examine the validity of this approximation. If we scale
the field–reservoir coupling constant g1r in the Hamiltonian (7) by writing γ g1r in place of
g1r , we can redefine the auxiliary field f1 as γ f1 (and f ∗

1 as γ f ∗
1 ) and get back the same

expressions for the propagatorsG1b and G1c; then the last exponent in the propagatorM0
1 in

(34) gets scaled with ẽ(τ ) in (35) redefined as γ ẽ(τ ). The field–reservoir coupling is usually
very weak, i.e., γ 	 1. Using the first cumulant approximation of the actual propagator, it can
be seen that the approximate propagator u1 we have got gives a fairly accurate microscopic
description of the system since the difference with the actual propagator comes out to be of
the order of fourth power of the coupling constant.

3. Many-mode reservoir

Returning to the original problem with the Hamiltonian (1) with K modes in the reservoir, the
propagator for the bosonized Hamiltonian now becomes (cf (15) for the Hamiltonian (8))

Ũ1(θ
∗,α∗, β∗, γ ∗, t; θ′,α′, β ′, γ ′, 0) =

∫
D2{θ}D2{α}D2{β}D2{γ }

× exp

 ∑
0�τ<t

[
K∑
k=1

θ∗
k (τ+)θk(τ ) +

M∑
r=1

α∗
r (τ+)αr (τ )

+ β∗(τ+)β(τ ) + γ ∗(τ+)γ (τ )

]
− i

K∑
k=1

∫ t

0
dτ�kθ

∗
k (τ+)θk(τ )

− i
M∑
r=1

∫ t

0
dτ�rα∗

r (τ+)αr (τ )− iω

2

∫ t

0
dτ [γ ∗(τ+)γ (τ )− β∗(τ+)β(τ )]

− i
K∑
k=1

M∑
r=1

∫ t

0
dτ gkr (α∗

r (τ+) + αr(τ ))(θ∗
k (τ+) + θk(τ ))

− i
M∑
r=1

∫ t

0
dτ (g∗

r α
∗
r (τ+) + grαr (τ ))(γ ∗(τ+)β(τ ) + β∗(τ+)γ (τ ))

 . (68)
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Here the notations are obvious generalizations from the previous section to include the K
modes of the reservoir oscillators b†, b:

D2{θ} =
K∏
k=1

D2{θk} (69)

D2{α} =
M∏
r=1

D2{αr}. (70)

The effective difference between (68) and (15) lies in the following term:

exp

{
−i

K∑
k=1

M∑
r=1

∫ t

0
dτ gkr (α∗

r (τ+) + αr(τ ))(θ∗
k (τ+) + θk(τ ))

}

=
K∏
k=1

exp

{
−i

M∑
r=1

∫ t

0
dτ gkr (α∗

r (τ+) + αr(τ ))(θ∗
k (τ+) + θk(τ ))

}

=
K∏
k=1

∫
D2{fk} exp

{
−i

M∑
r=1

∫ t

0
dτ f ∗

k (τ )gkr (α
∗
r (τ+) + αr(τ ))

}

× exp

{∫ t

0
dτ fk(τ )(θ∗

k (τ+) + θk(τ ))

}
(71)

where we have introduced K independent complex auxiliary fields.
Thus the propagator given by (68) is given in a manner analogous to (20) as

Ũ1(θ
∗,α∗, β∗, γ ∗, t; θ′,α′, β ′, γ ′, 0)

=
K∏
k=1

∫ ∫
D2{f }D2{fk}G1k(α

∗, t; α′, 0; [f ∗, f ∗
k ])

×M1k(θ
∗
k , t; θ ′

k, 0; [fk])N1(β
∗, γ ∗, t; β ′, γ ′, 0; [f ]). (72)

Proceeding in a manner analogous to that outlined in the previous section, taking the l = 1
term in N1, and using the same approximation of M0

1 for M1, we obtain the amplitude of the
propagator corresponding to the Hamiltonian (1) with the initial condition

Ũij (t = 0) = exp

{
K∑
k=1

θ∗
k θ

′
k

}
exp

{
M∑
r=1

α∗
r α

′
r

}
δij (73)

in a matrix form as follows:[
Ũ00 Ũ01

Ũ10 Ũ11

]
= exp

{
K∑
k=1

θ∗
k θ

′
k e−i�kt

}
exp

{
M∑
r=1

α∗
r α

′
r e−i�r t

}

×
∞∑
n=0

( iω

2

)n ∫ t

0
dτn

∫ τn

0
dτn−1 · · ·

∫ τ2

0
dτ1

×


K∏
k=1

Kα̃k (�k)√
α̃2
k + 4�kξk

exp
{
− i

4
Ak

}
exp

{
F
(n)

2

}

×
[

cosh
(
φ
(n)

2

)
sinh

(
φ
(n)

2

)
(−1)n sinh

(
φ
(n)

2

)
(−1)n cosh

(
φ
(n)

2

) ]
 (74)
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where

φ
(n)

2 = φ
(n)
21 −

K∑
k=1

(n1k (�k)θ
∗
k e−i�kt + n1k

(
−�k)θ ′

k +
i

4
Ck

)
(75)

with Ak,Ck, n1k (�k), Kα̃k (�k), α̃k,�k, ξk given by (55), (56), (63), (41), (48), (51) and (52),
respectively, with g1r replaced by gkr ,� replaced by �k, θ∗ replaced by θ∗

k , and θ ′ replaced
by θ ′

k. It can be seen that (74) satisfies the initial condition given by (73). Even though the
propagator (74) has been obtained in the form of quadratures, it cannot be evaluated in a closed
form in the general case.

4. Quantum Brownian motion

We will first check our method on a simple model describing a damped harmonic oscillator
[15]. This well-known example has been used by Caldeira–Leggett [2] to treat the problem
of a quantum Brownian particle (an oscillator) interacting with an environment modelled by a
set of oscillators. The Hamiltonian for this problem is

H = HS +HE +HSE (76)

where the Hamiltonian of the system is

HS = h̄�b†b (77)

the Hamiltonian of the environment is

HE =
M∑
r=1

h̄�ra
†
rar (78)

and the interaction of the system with the environment is

HSE =
M∑
r=1

h̄g1r
(
a†r + ar

)
(b† + b). (79)

Now (76) is the same as (7) in the absence of the spin-1/2 component, and hence we have the
propagatorK1 for the Hamiltonian (76) as (cf (20))

K1(θ
∗,α∗, t; θ ′,α′, 0) =

∫
D2{f1}G1(α

∗, t; α′, 0; [f ∗
1 ])M1(θ

∗, t; θ ′, 0; [f1]) (80)

whereG1 stands for the propagator of

HG1 = h̄

M∑
r=1

[
�rα

∗
r

∂

∂α∗
r

+ f ∗
1 (t)g1r (α

∗
r + αr)

]
(81)

M1 stands for the propagator of

HM1 = h̄

[
�θ∗ ∂

∂θ∗ + if1(t)(θ
∗ + θ)

]
. (82)

We now write the density matrix in the holomorphic representation as

〈θ1α1|ρ(t)|θ2α2〉 =
∫

dµ(θ ′
1) dµ(θ ′

2) dµ(α′
1) dµ(α′

2)〈θ1α1|e−iHt/h̄|θ ′
1α

′
1〉

× 〈θ ′
1α

′
1|ρ(0)|θ ′

2α
′
2〉〈θ ′

2α
′
2|eiHt/h̄|θ2α2〉 (83)

where dµ(θ ′
1) = e−θ ′

1θ
′∗
1 d2θ ′

1/π and so on, and is the measure used in the completeness relation.
The vector α = (α1, α2, . . . , αM) denotes the reservoir coordinates while θ denotes the system
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coordinate. To obtain the reduced density matrix of the system alone, the reservoir coordinates
are traced out and we have

〈θ1|ρ(t)|θ2〉 =
∫

dµ(α1)〈θ1α1|ρ(t)|θ2α1〉

=
∫

dµ(θ ′
1) dµ(θ ′

2) dµ(α′
1) dµ(α′

2) dµ(α1)

×K10(θ
∗
1 ,α

∗
1, t; θ ′

1,α
′
1, t)K

∗
10(θ

∗
2 ,α

∗
1, t; θ ′

2,α
′
2, 0)〈θ ′

1α
′
1|ρ(0)|θ ′

2α
′
2〉 (84)

where K10 is obtained from the propagatorK1 in (80) with the approximation of M0
1 for M1

as in (31), and evaluated using the procedure outlined in section 2.
If we assume that initially the system and reservoir density matrices were uncorrelated,

we have

〈θ ′
1α

′
1|ρ(0)|θ ′

2α
′
2〉 = ρA(θ

′∗
1 , θ

′
2, 0)ρB(α

′∗
1 ,α

′
2, 0) (85)

where

ρ(0) = ρA(0)ρB(0) (86)

with ρA(0) being the initial system density matrix and ρB(0) the initial reservoir density
matrix. Let the system be initially in a pure coherent state |α〉 so that

ρA(θ
′∗
1 , θ

′
2, 0) = eθ

′∗
1 α eα

∗θ ′
2 . (87)

For the initial reservoir density matrix, we assume an ensemble of harmonic oscillators at
equilibrium at a temperature T, given by

ρB(α
′∗
1 , α

′
2, 0) =

M∏
r=1

e−h̄�r/2kBT exp{e−h̄�r /kBT α′∗
1rα

′
2r } (88)

where kB is the Boltzmann constant.
Now we substitute (85), (87), (88) in (84) to get the reduced density matrix of the system

in a Gaussian form. In order to express the coefficients of the Gaussian in a simple form, we
set � equal to zero. This enables us to write the normalized reduced density matrix as

ρ(θ∗
1 , θ2, t) = C ′ 1√

α1α2
exp

{
− 1

(2α1α2)
[2yθ∗

1 θ2 − zθ2
2 − z∗θ∗2

1 − 2n∗θ2 − 2nθ∗
1 ] + θ∗

1 θ2

}
(89)

where

C′ =
√
y2 − |z|2√
α1α2

exp

{
− 1

(α1α2[y2 − |z|2])

[
z∗n∗2

2
+ y|n|2 +

zn2

2

]}
(90)

with

α1 = 1 + 2[G− C
∗
] (91)

α2 = 1 − z

α1
(92)

z = 2α1(C −G
∗
) + A

2
(93)

y = α1α2 − A (94)

n = α∗
1α +Aα∗ (95)

A =
M∑
r=1

coth

(
h̄�r

2kBT

)
(g1r )

2(S
∗
r Sr) (96)



5800 S Banerjee and R Ghosh

C =
M∑
r=1

e−h̄�r /2kBT

2 sinh
(
h̄�r
2kBT

) e−i�r t (g1r )
2(S

∗
r )

2 (97)

G =
M∑
r=1

g2
1r

�r
(Sr − it) (98)

Sr = 1

�r
(1 − e−i�r t ). (99)

The reduced density matrix (89) for the system has the same form as known in the literature,
e.g., [15].

5. An explicit evaluation

In this section we will explicitly evaluate the propagator for the following Hamiltonian with
one spin and a dynamically coupled single-mode field:

H = 1
2 h̄ωσz + h̄g1(a

† + a)(b† + b) + h̄g(a† + a)σx. (100)

The Hamiltonian (100) is a simplified version of the Hamiltonian (7), with M = 1, g1r ≡ g1

(real) and gr = g∗
r ≡ g (real).

We write the propagator of the bosonized form of this Hamiltonian, analogous to (20), as

U2 =
∫ ∫

D2{f }D2{f1}G1M1N1. (101)

Here

G1 = G1aG1bG1c (102)

where

G1a = exp

{
α∗α′ − ig(α∗ + α′)

∫ t

0
dτ f ∗(τ )− g2

2

(∫ t

0
dτ f ∗(τ )

)2
}

(103)

G1b = exp

{
−i(α∗ + α′)g1

∫ t

0
dτ f ∗

1 (τ )−
g2

1

2

(∫ t

0
dτ f ∗

1 (τ )

)2
}

(104)

G1c = exp

{
−gg1

∫ t

0
dτ

(∫ t

0
dτ ′f ∗

1 (τ
′)
)
f ∗(τ )

}
. (105)

From (29),

M1 = exp

{
θ∗θ ′ + (θ∗ + θ ′)

∫ t

0
dτ f1(τ ) +

1

2

(∫ t

0
dτ f1(τ )

)2
}

= 1√
2π

∫
dλ exp

{
−1

2
(θ∗2 + θ ′2)− λ2

2
+ λ(θ∗ + θ ′) + λ

∫ t

0
dτ f1(τ )

}
. (106)

This is done in order to facilitate the use of the δ-functional identity (18). N1 here is written
not with Q given in the form of a series as in (37), but in a product form as

Q(t) = T exp

[
−i
∫ t

0
dτ
(ω

2
σz + if (τ)σx

)]
(107)

where T denotes time ordering.
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Now substituting (102) and (106) into (101), we have

U2 =
∫

D2{f }G1a

(∫
D2{f1}G1bG1cM1

)
N1

= 1√
2π

exp{α∗α′}
∫

D2{f }
∫

dλ exp

{
−1

2
(θ∗2 + θ ′2)

− λ2

2
+ λ(θ∗ + θ ′)− i(α∗ + α′)g1λt − g2

1

2
λ2t2

}
× exp

{
−ig(α∗ + α′)

∫ t

0
dτ f ∗(τ )− gg1λt

∫ t

0
dτ f ∗(τ )

− g2

2

(∫ t

0
dτ f ∗(τ )

)2
}
N1. (108)

Now the terms with f ∗(τ ) can be written as

exp

{
−1

2
g2

(∫ t

0
dτ f ∗(τ )

)2

− g
[
i(α∗ + α′) + g1λt

] ∫ t

0
dτ f ∗(τ )

}

= 1√
2π

∫
dλ1 exp

{
1

2
(i(α∗ + α′) + g1λt)

2 − λ2
1

2
− iλ1g

∫ t

0
dτ f ∗(τ )

+ (α∗ + α′)λ1 − ig1λλ1t

}
. (109)

Expanding N1 and taking the l = 1 term as before with Q(t) given by (107), using (109) in
(108), and applying the δ-functional identity (18) gives us the propagatorU2 of the Hamiltonian
(100) as

U 2 = 1

2π

∫
dλ
∫

dλ1 exp
[
−i
(ω

2
σz + λ1gσx + g1λλ1

)
t
]

exp

{
−1

2
(α∗2 + α′2)

− 1

2
(θ∗2 + θ ′2) + λ(θ∗ + θ ′) + λ1(α

∗ + α′)− 1

2

(
λ2 + λ2

1

)}
. (110)

This can now be expanded in the power series of the matrices σx and σz to get the propagator
in a matrix form.

It may be noted that Papadopoulos [9] has explicitly worked out the propagator for the
Hamiltonian

H = 1
2 h̄ωσz + h̄g(a† + a)σx.

We have the same form of eigenfunction expansion for the propagator with the eigenfunctions
now having additional terms corresponding to the new variables, as well as a time-dependent
term originating from the dynamics introduced into the Hamiltonian (100) by the term
h̄g1(a

† + a)(b† + b). The result of Papadopoulos can easily be found from (110) by setting the
appropriate terms to zero.

6. Summary

We have obtained the propagator for a very general Hamiltonian which can be used to describe
a two-level atom interacting with a multimode radiation field (without the rotating-wave
approximation) in a cavity with the cavity field linked to a reservoir. We proceeded by
bosonizing a simpler Hamiltonian, namely, one having only one reservoir mode, and evaluated
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the propagator using the coherent state path integral method. Following Papadopoulos [9],
the evaluation has been facilitated by functional integral averages over two complex auxiliary
fields against Gaussian measures of the fields. The functional averaging over one auxiliary
field is done exactly while the functional averaging over the second auxiliary field is done
in a reasonable approximate manner. The propagator obtained by Papadopoulos [9] for the
single spin–Bose system is reproduced satisfactorily in the appropriate limit. The result is
then generalized to obtain the propagator for the original Hamiltonian with many modes of
the thermal reservoir. The propagator is explicitly evaluated for a simplified version of the
system with one spin and a dynamically coupled single-mode field.

The results are also checked on the known problem of quantum Brownian motion. We
take the case where the system oscillator is initially in a pure coherent state, and the system and
the reservoir are initially uncorrelated. We find a Gaussian form of the reduced density matrix
describing the system alone. As opposed to a ‘macroscopic’ approach to such problems of
open quantum systems in which a precise description of every degree of freedom is not used,
our approach is a ‘microscopic’ one in that we first solve for the propagator of the Hamiltonian
and the propagator can then be used to obtain the reduced density matrix of the system of
interest.
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